Andrew Rhim, M.D.

Cancer researchers have found that the immune system plays an important role in cancer. Our immune system I programmed to kill cancer cells. But, cancer cells eventually develop ways to escape the immune system and grow and spread. While it is unclear how this happens, many scientists are now developing therapies to reactivate the immune system to attack cancer cells. This field is called immunotherapy. While promising, we are still in early days, and there is much about the cancer immunology we don’t understand. Through our studies, we have identified a protein called APOBEC3A that might prevent the immune system from destroying cancer cells. APOBEC3A is an interesting protein since it is found in high amounts in many types of cancers, including lung, breast, colon and pancreatic cancer. Here, we will try to understand how APOBEC3A exactly affects the immune system in cancer. Secondly, we have found that human and mouse tumors that have high levels of APOBEC3A also tend to have high levels of molecules that specifically stop immune cells from attacking cancer cells called checkpoints. In a novel preclinical trial, we will see if a combination of drugs that target these molecules can effectively treat cancers that express high levels of APOBEC3A. If this trial works in mice, then this approach may be lead to a new treatment strategy in a subgroup of patients with many types of cancer, including pancreatic cancer.

Rachel Rau, M.D.

Funded by the Dick Vitale Gala and Northwestern Mutual in memory of John Saunders

Over one-quarter of children with acute myeloid leukemia (AML) have a form called core binding factor (CBF) AML. Despite intense therapy, ~30% of these patients will relapse. Thus, identifying new therapeutic targets is necessary to develop more effective, less toxic treatment regimens.
The CBF complex coordinates the expression of genes required for normal development of blood cells. CBF AMLs harbor one of two genetic changes (t(8;21) or inv(16)) that interferes with the function of the CBF complex. While often grouped together, t(8;21) and inv(16) affect different members of the CBF complex and have unique disease features, suggesting important, yet unknown, biological differences exist. Interestingly, t(8;21) AML and inv(16) AML have different combinations of other cancer-causing mutations, providing potential clues to the genesis of t(8;21) and inv(16) AML. In particular, mutations affecting another complex that regulates gene expression, called the cohesin complex, are common in t(8;21) AML, yet never occur in inv(16) AML. The frequency of cohesin mutations with t(8;21) suggests that cohesin dysfunction cooperates with t(8;21) to cause leukemia by collaboratively activating cancer-causing genes, which could represent targets for therapy. Conversely, the absence of cohesin mutations with inv(16) indicate a dependence upon intact cohesin function, and perhaps the cohesin complex itself could be targeted in inv(16) AML.
We will explore the interactions between the cohesin and the CBF complexes in AML using murine and human systems. Our study will provide novel insight into the mechanisms driving CBF AML, likely uncovering herapeutic targets for the treatment of children with this disease.

Ronald Parchem, Ph.D.

Tumors that spread to the brain, called brain metastases, are the cause of death of half of patients with metastatic melanoma. The metabolic environment of the brain is uniquely low in two amino acids, serine and glycine, which carry messages between nerve cells. This ensures accurate nerve cell communication, but should prevent or slow the growth of tumors, as tumor cells need large amounts of serine and glycine to make DNA and proteins to divide and grow. Yet, tumors can spread to the brain, and are incurable once they have done so. 
 
We hypothesize that tumors metabolically adapt to the brain’s metabolic environment by increasing their ability to make serine and its product glycine, and that blocking the production of serine should either attenuate the development of brain metastases or help treat existing brain metastases. We will determine if serine synthesis is increased in brain metastases, and if tumor cells adapt to, or are selected for, the environment of the brain by increasing their production of serine and glycine. In addition, we have developed small molecules that inhibit serine synthesis, and will test these compounds in mouse models of melanoma brain metastases with the goal of reducing their initiation or growth. These studies will demonstrate that targeting the serine synthesis pathway might be useful in treating melanoma brain metastases and offer proof of concept that small molecule inhibitors of serine synthesis might be effective in treating patients with melanoma brain metastases and brain metastases from other tumors

Kexin Xu, Ph.D. & Virginia Kaklamani, M.D.

About 12% of U.S. women will develop invasive breast cancer over the course of her lifetime. Despite advances in early diagnosis and treatment of the disease, breast cancer remains the most commonly diagnosed non-cutaneous malignancy and the second leading cause of cancer death in American women. Acquisition of resistance to current therapies is a major challenge in everyday clinical practice, which significantly reduces the disease-free survival and overall survival in breast cancer patients. Thus, it is important to develop new therapeutic approaches for circumvention of resistance and also to identify predictive biomarkers for more effective treatment decisions. Our previous work found a protein called EZH2 as a very promising therapeutic target in metastatic breast cancer that becomes refractory to hormone therapy. Several highly selective inhibitors of EZH2 are currently being tested in phase I/II clinical trials in patients with B-cell lymphoma. In this study, we will evaluate the efficacy of these EZH2-targeting drugs in metastatic, endocrine resistant breast cancer. We further demonstrated that DNA methylation of one of EZH2-regulated target genes, called GREB1, is highly associated with EZH2 activity in advanced breast cancer. So we will test whether methylation of GREB1 can be used to identify patients who will respond to EZH2 inhibitors. Results from this clinical study provide a novel targeted therapy for advanced breast cancer and a biomarker for choosing the right treatment. Our work will pave the way for the development of personalized medicine as an alternative approach to fighting metastatic, endocrine therapy resistant breast cancer.

University of Texas MD Anderson Cancer Center

Funded by the Kay Yow Cancer Fund

The overall goal of the University of Texas MD Anderson Cancer Center Ovarian SPORE is to prolong survival and to reduce the number of deaths from ovarian cancer through innovative research in the detection and treatment of ovarian cancer. The investigators funded by this grant have worked together to conduct five separate research projects. Project 1 has evaluated new biomarkers to create a blood test for early detection of ovarian cancer. When ovarian cancer is detected in stage I, up to 90% of women can be cured; however, only 20-25% of women are currently diagnosed at this stage. Detection of early stage disease in a larger number of women could improve the cure rate by 15–30%. Project 2 has tested drugs that can overcome the resistance that is developed to current therapy which targets the blood vessels that grow into and bring nutrients to ovarian cancer cells. Increasing the ability of drugs to eradicate the tumor blood supply will help kill the cancer cells. Project 3 has tested drugs for personalized therapy for low- grade cancer. Low-grade ovarian serous carcinoma is more common in younger women and it is a unique disease that is highly resistant to standard chemotherapy and difficult to manage. The goal of this project is to improve understanding of how low-grade ovarian cancer develops and progresses in order to identify new drug therapies that limit its growth. Project 4 has studied drugs for personalization of treatment for high grade ovarian cancers. Not all ovarian cancers will respond the same way or to the same extent to the chemotherapy drugs currently available or to the targeted therapies that are becoming the standard of care. This is due to molecular variation that exists from person to person and from cancer cell to cancer cell in the same patient. Finally, Project 5 has created modified cells that can be used to deliver a therapeutic agent directly to the ovarian tumors. Bone marrow-derived mesenchymal stem cells (MSC) are collected from an individual and modified in a test tube using recombinant DNA techniques. The modified cells are then injected into the patient and will move through the blood stream and ultimately integrate into the ovarian tumors. Once engrafted in the tumor, the modified MSC will produce a potent anti-tumor molecule which acts to reduce cancer cell growth.

Steven Sherman, M.D.

Funded by The V Foundation Wine Celebration Vintner Grant
for the Far Nient Partners, in honor of Stephanie Putnam

Mailing List Mailing List
Close Mailing List