Designed to identify, retain and further the careers of talented young investigators. Provides funds directly to scientists developing their own independent laboratory research projects. These grants enable talented young scientists to establish their laboratories and gain a competitive edge necessary to earn additional funding from other sources. The V Scholars determine how to best use the funds in their research projects. The grants are $200,000, two-year commitments.
People that get cancer usually take medicines, called “chemotherapy”, that often made them feel very tired and sick. These problems can last for many months, even after they are completely cured. In our laboratory we demonstrated that animals that take chemotherapy lose weight and are weaker. As of now, we do not know how to prevent this, in particular because we do not know the causes. For this reason, we want to learn why patients with cancer show the signs of fatigue, so that we can also find new medications to improve their health and help them feel better. Very recently, we discovered that the medications used to kill cancer also destroy the “mitochondria”, that are the little engines in the cells, in our muscles. Because of this, we think that if we can prevent the mitochondria from being lost then we can also help the patients feel better and less tired. We plan to give mice with cancer the regular medications, with or without a new drug, called MitoQ. We think MitoQ will protect the mitochondria in the muscle of mice, will prevent them from losing weight and will make them feel stronger. If we our idea is correct, in the future we will propose the use of MitoQ also in people with cancer. By doing so, the patients will feel better, will have fewer troubles due to the chemotherapy and will also have a better chance to get completely cured and go back to a normal life.
Funded in partership with WWE in honor of Connor’s Cure
Young girls who survive cancer may also face the devastating prospect of reduced fertility and hormonal problems when they reach adulthood. Treatment of pediatric cancer damages ovaries and lifetime egg supplies in up to 20% of young girls. Current strategies to correct loss of fertility involve removal of eggs from patients prior to treatment, but this is invasive and does not prevent the chronic health problems that result from ovarian damage.
To improve quality of life for young female cancer survivors, we must develop strategies to protect their egg supplies, which are critical for continuous endocrine function of ovaries and fertility. Our goal is to identify egg-saving treatments that can be used along with standard cancer therapies.
We will begin by analyzing how eggs and other cells in the ovary respond to different cancer treatments. By detecting changes in the levels of proteins in response to various cancer therapies, we can learn which proteins are responsible for egg death and identify drugs that target those proteins to prevent eggs from dying.
Our lab has previously found that a specific protein, CHK2, promotes elimination of eggs in response to the kind of damage caused by cancer treatments, making this a promising target. We will test the feasibility of targeting CHK2, and we expect that our work will demonstrate the benefits and potential risks of CHK2-targeting drugs for protecting eggs. We also expect to provide a list of novel drug targets for egg protection in cancer patients.
Scientists have recently made tremendous progress in treating cancers by activating the immune system to attack the tumor. However, these therapies are not effective against cancers with less DNA damage due to insufficient anti-tumor immune responses. The immune system is capable of attacking these tumors, but suppressive immune subtypes such as regulatory T cells (Tregs) are coopted by the tumor to protect itself. Tregs are associated with poor survival in many cancers, and show enrichment for particular T cell receptors (TCR). The TCR senses targets by binding to their peptide-MHC ligands, which display a cross-section of peptides expressed by a particular cell. Despite their important role in protecting tumors, the identity and specificity of tumor-resident Tregs is poorly studied. We are working to profile what T cells are enriched in low mutation rate cancers. We can then use approaches we have developed to find what these T cells as seeing in the tumor. This information will help us understand of one of the most important tumor-protective cell types, and may open the door to new cancer immunotherapies.
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.