Funded by the 2025 Kay Yow Cancer Fund Final Four Research Award
Ovarian cancer is hard to treat. Most patient’s cancer comes back after standard treatment. Once the disease is back it is more difficult to treat and patients will eventually die from it. Chemotherapy can also cause direct harm to the body. This can make patients delay treatment, stop it altogether, or lower their doses. It can also harm the good bacteria in the gut, which is important for how well treatments work. Our goal is to come up with new ways to predict, prevent, and manage these harmful effects. We also want to develop new therapies that can lead to complete and lasting responses, increasing chances of cure right from the start. To reach this goal we will use mathematical modeling. This will allow us to test many treatments quickly, which cannot be done with traditional laboratory methods. First, we will use patient blood samples to predict the risk of toxicity, helping doctors know when to change or pause treatment. Next, we will use math modeling to find the best combinations of new targeted therapies. Finally, we will reduce the harmful effects of chemotherapy on the gut using math modeling to improve how well those therapies work. This research could change how we treat cancer. It may lead to complete tumor response and better chances for a cure.
Funded by the V Foundation Wine Celebration in honor of Mike “Coach K” and Mickie Krzyzewski
Pancreatic cancer is the third leading cause of cancer death in the United States. Treatments have changed very little in recent years. One challenge is that there are different “subtypes” of pancreatic cancer, so tailored therapies are desperately needed. Our lab found that drugs that block a protein called cyclin-dependent kinase 7 (CDK7) can kill the basal subtype, which is the most lethal. It makes up a quarter of pancreatic tumors and has the worst overall survival. We propose to study a drug that blocks CDK7 in patients with early-stage pancreatic cancer, after chemotherapy and before surgery. This funding will allow us to work with Carrick Therapeutics, who is giving us a supply of drug for the clinical trial. Our ultimate goal is to offer a new targeted treatment option and hope to pancreatic cancer patients.
Funded by Kelly Chase and the St. Louis Blues Alumni Puck Cancer charity hockey game in support of Hockey Fights Cancer powered by the V Foundation
This proposal presents a plan to collect and manage blood samples from patients getting stem cell transplants. In this treatment, unhealthy blood-forming cells (stem cells) are replaced with healthy ones. With help from the V Foundation, this research will set up and manage a new system for storing these transplant samples at Washington University in St. Louis. The study will look at detailed biological data from 40 patients who receive these transplants. These patients will have different types of donors: siblings who match, unrelated donors who are matched and unmatched, and partially matched family members. The goal of the transplant sample storage program is to help researchers at Washington University find ways to make stem cell transplants safer and more effective for treating blood cancers.
This research will also help understand how new drugs that suppress the immune system work. With the support of the V Foundation, this project supports their mission to defeat cancer.
Funded by the St. Louis Blues in support of Hockey Fights Cancer powered by the V Foundation
Therapies that modulate the immune response avoid the harmful side effects of standard cancer therapies and also have the potential to be more effective and longer-lasting. The most successful immune therapies to date rely on engineering a specific type of immune cells, T cells, to target and kill cancer cells. These therapies can be curative for some, but unfortunately still do not achieve their potential of cure for most. Our lab has identified a specific molecular pathway responsible for controlling the function of these immune cells. The goals of this project are to first understand how the driver of this pathway, a protein called BACH2, regulates engineered T cell function. Second, we aim to use advanced protein engineering tools to control the activity of BACH2, allowing us to thereby control engineered T cell function at will. If successful, these studies will shed light on a previously under-appreciated pathway that lies at the center of T cell function. Further, they will layout a pathway for “remote control” of BACH2 and nearly any T cell molecular program, allowing precision control of this potent anti-cancer therapy.
Funded by the Stuart Scott Memorial Cancer Research Fund
Pancreatic cancer is an extremely deadly disease, due to its ability to spread to other organs early and easily, a process known as metastasis. Molecules called purines are often used to build DNA and have been shown to be used by cancer cells to grow and survive. Pancreatic cancer usually spreads to the liver, an organ rich in purines. We find that pancreatic cancer cells, which contain mutations in certain genes involved in cell growth, prefer to use purines to uncontrollably grow and survive. Our study will identify how metastatic pancreatic cancer cells use purines to spread and survive in organs such as the liver. We will also test FDA-approved drugs used to treat other purine-dependent diseases such as gout and metastatic breast cancer to treat pancreatic cancer addiction to purines.
Funded by the Dick Vitale Pediatric Cancer Research Fund
Immune checkpoint inhibitor therapy (ICT) is a form of cancer therapy that boosts the immune system to kill cancer cells. ICT can help cure some adult cancers but has not been effective in children with cancer. This proposal explores whether a combination of standard cancer therapy and ICT is both safe and effective in children with solid tumors in a clinical trial. First, we will test tumor, blood, and stool samples collected from patients in this clinical trial. We will attempt to learn what factors determine whether a patient will respond to this combination therapy or not respond. Second, we will use mouse cancer models to test different combinations of standard cancer therapy and ICT to see which combinations work the best. This work will help us understand if combining standard cancer treatments with ICT is both safe and effective in children with solid tumors.
Cancer cells often change their DNA to make more of the genes that help them grow and spread quickly. They do this with special proteins called transcription factors that read DNA, and helper proteins that change the DNA to work better. In prostate cancer cells, a protein called androgen receptor (AR) is the main cause of cancer growth. This is different from how AR works in normal prostate cells, where it helps the prostate develop properly and stops extra growth. We don’t know exactly how AR’s function changes in prostate cancer cells. My research tries to figure this out. With help from the V Foundation Award, my team will study a new protein called NSD2 that works with AR. Notably, NSD2 is only found in prostate cancer cells, not the normal ones. We’ll also test a new drug that stops NSD2 from working and see how well it kills cancer cells in different types of prostate cancer. This research will help us find more proteins that make AR cause cancer and create new medicines that target NSD2 to treat prostate cancer.
Funded by the Stuart Scott Memorial Cancer Research Fund with support from the Oral Cancer Cause
Voice is an incredible tool that we use every day to express our feelings and even our health. You can often tell if someone is stressed, happy, or not feeling well just by the way they sound. In fact, over 50 different diseases can cause noticeable changes in a person’s voice. One of the most serious conditions that affect the voice is laryngeal cancer, or cancer of the voice box. This type of cancer can cause major changes in a person’s voice, even in the early stages. Unfortunately, if it is not caught early, it can lead to the loss of voice, difficulty swallowing, and too many cases, death. The earlier we detect laryngeal cancer, the more treatment can preserve the voice and improve survival rates. The problem is that while many people with laryngeal cancer experience voice changes, most people who have a change in their voice do not have cancer. This creates a challenge for primary care doctors, who need to identify the rare instances where voice change suggests something more serious. To help with this, we are developing a machine learning tool that can listen to voice recordings and help doctors figure out when a patient may be at high risk for laryngeal cancer. This could help detect cancer earlier and save lives by making it easier for doctors to know when to refer patients to specialists for further testing.
Dr. Joseph Moore Excellence in Oncology Grant* Funded by Constellation Brands Gold Network Distributors
Myeloma is a blood cancer that causes bone and kidney damage. Myeloma is the second most common blood cancer. New treatments are improving patient lives, but patients have to take medicine for the rest of their life. The cancer eventually adapts to these drugs and harms patients.
We will study myeloma that has become drug resistant. We are testing new therapies that can overcome drug resistance. This new therapy targets something called a co-activator. Co-activators turn on genes that enable the cancer to grow. Our research will treat cancer models with inhibitors of co-activator to understand how they work. We will also test different co-activator inhibitors to see which are most effective. Finally, we will look for genes that cause drug resistance. These studies will help guide ongoing clinical trials in myeloma. The long-term goal of this research is to find the right combination of therapies that will stop myeloma from growing.
Funded by the Stuart Scott Memorial Cancer Research Fund
Our research looks at how hormone receptors play a role in cancer. These receptors are involved in prostate, breast, uterine, and ovarian cancers. Normally, they help control important functions in the body. But as people get older and hormone levels drop, these receptors can stop working properly and help cancer grow.
Even though there are treatments that block these receptors, many patients still see their advanced cancers return within two years. This happens because cancer cells find new ways to turn the receptors back on, which makes the treatments less effective.
To tackle this problem, we use advanced imaging tools, including high powered microscopes, to make 3D models of the hormone receptors. This helps us see how the receptors work and what goes wrong in cancer. We have already found new interactions at the molecular level that were not known before. With support from the V Foundation, we hope to create better drugs that target these receptors more effectively, helping to stop cancer from coming back and improve patient outcomes.