Acute myeloid leukemia (AML) is a deadly blood cancer that starts in the bone marrow, where our blood cells are made. This cancer is especially dangerous for people over 65 – more than 9 out of 10 patients die from it. The treatments we have now work for a while, but then they stop working. This happens because some cancer cells are tough and can survive the treatment, causing the cancer to come back. Scientists have discovered something important about how these cancer cells survive. They found that the way cancer cells use iron helps them fight off treatment. Iron is a mineral our bodies need, but cancer cells change how they handle iron to stay alive when doctors try to kill them. We believe that iron helps cancer cells resist drugs that are supposed to make them grow into normal, healthy blood cells. We made an exciting discovery: when they used drugs that grab onto iron, the cancer cells became much easier to kill with regular treatments. This seems to work on many different types of this blood cancer, even the hardest ones to treat. We plan to test this new approach by mixing iron-grabbing drugs with current treatments. We will use real cancer cells from patients to see if this combination works better. We want to find out if it can really get rid of the cancer stem cells (the “parent” cells that keep making more cancer). If this research works, doctors could have a new way to treat older patients with this blood cancer. Many older patients can’t get bone marrow transplants because they’re too risky. By targeting how cancer cells use iron, doctors might be able to beat treatment resistance and help patients live longer without using harsh chemotherapy drugs.
Britta Will, PhD
Location: Montefiore Einstein Comprehensive Cancer Center - Bronx
Proposal: Genetic subtype-agnostic differentiation therapy for patients with myeloid malignancies