Christina Glytsou, PhD

Acute Myeloid Leukemia (AML) is the most common and deadliest blood cancer in adults. In 2022, over 11,000 AML patients sadly lost their lives in the USA. The treatment options for AML have stayed the same for many years. But in 2018, a new oral medication called Venetoclax was introduced as a potential breakthrough for AML treatment.

Normally, when our cells become damaged, they have a way of self-destructing called apoptosis. It helps stop any defects from spreading in our bodies. Unfortunately, cancer cells, including those in AML, don’t follow this program and become “immortal,” spreading and causing trouble. Venetoclax is designed to make those cancer cells self-destruct, specifically targeting and killing them.

At first, AML patients showed promising responses to Venetoclax. However, it’s disheartening that about 3 out of 10 patients don’t respond to the medication and in many other patients, AML comes back after treatment.  That’s where our research comes in. We want to understand why some patients don’t respond to Venetoclax and how leukemia cells manage to escape apoptosis triggered by the medication.

Through our studies focusing on the molecular aspects of resistance to Venetoclax, we aim to identify potential targets for new and improved therapies for AML. Our studies will also propose combination treatments that could enhance the effectiveness of Venetoclax. Ultimately, with the knowledge gained from this research, we aspire to lay the groundwork for future clinical trials and develop better and safer treatments that will help AML patients live longer and have better lives.

Location: Rutgers Cancer Institute of New Jersey - New Brunswick
Proposal: Mitochondrial dynamics adaptations in drug-resistant acute myeloid leukemia
Mailing List Mailing List
Close Mailing List