Funded by the Dick Vitale Pediatric Cancer Research Fund
Pediatric cancer patients have greatly benefited from advancements in CAR-T cell therapy, a cancer treatment in which a patient’s own T cells – a type of immune cell – are reprogrammed to recognize and kill cancer. CAR-T cell therapy has demonstrated remarkable clinical success and can even cure some patients; however, only 50% of those treated remain cured after 12 months. A major roadblock preventing this therapy from curing more patients is poor CAR-T cell survival. Patients with long-lived CAR-T cells are more likely to be cured than those with short-lived CAR-T cells. Therefore, there is an urgent need to develop strategies that help CAR-T cells stay in the fight against cancer.
My research project will test a new approach that helps CAR-T cells survive longer by tapping into the natural biology that helps T cells persist in the body. By forcing CAR-T cells to act more like naturally occurring long-lived T cells, we can boost their ability to survive and kill cancer. We will also determine the molecular “secret sauce” that allows some patients’ CAR-T cells to persist for longer compared to others. Collectively, this project will help advance more efficacious therapies for blood cancers and potentially other types of cancer in both children and adults, and reveal valuable information about CAR-T cell persistence that can be leveraged for future discoveries.