Haider Mahdi, MD

Funded by Lloyd Family Clinical Scholar Fund

Ovarian cancer (OC) is the most lethal gynecologic cancer in the US. Unfortunately, the majority suffer relapse. Patients with recurrent platinum-resistant OC respond poorly to chemotherapy.

Immunotherapy with immune checkpoint inhibition (ICI) has emerged as a promising therapy in several cancers. Unfortunately, only small fraction (10-15%) of patients with OC do benefit from immunotherapy. Therefore, effective strategies are warranted to improve the overall benefit of immunotherapy in OC. Targeting immunosuppressive factors within the tumor immune microenvironment (TME) represents an attractive approach. Our focus in this proposal is on tumor-associated macrophages in OC.

Macrophages with a specific ‘suppressor’ phenotype (M2 subtype) within TME play a significant role in promoting an immunosuppressive environment and in mediating therapy resistance. These cells are the most prominent cells in OC. However, another phonotype (M1 subtype) provides a favorable pro-inflammatory TME and enhances the immune response. Targeting macrophages and switching their phenotype from M2 to M1 is potentially promising approach that has not been investigated thoroughly before. In this study, we propose to target them with two strategies: Targeted inhibition of the transforming growth factor-beta (TGF-beta) receptor and CD47 inhibition. 

Location: UPMC Hillman Cancer Center - Pittsburgh
Proposal: Strategies to modulate plasticity of tumor associated myeloid cells to overcome immunotherapy resistance in ovarian cancer
Mailing List Mailing List
Close Mailing List