Jouha Min, PhD

Funded by the Dick Vitale Pediatric Cancer Research Fund

Diffuse midline glioma (DMG) is a fatal pediatric brain tumor, striking 200-400 children in the U.S. each year. Most children with DMG survive <1 year and have no proven therapies beyond radiation. A series of new drugs are being tested in clinical trials of DMG patients, but we lack sufficient tools to track how well they work. Cancer is a rapidly moving target as it can mutate to evade the onslaught of anti-cancer drugs; thus, tumors must be analyzed repeatedly during treatment to assess therapy response. Today’s standard of care for DMG is limited to frequent imaging (MRI), which provides insufficient data to assess therapeutic response. By advancing a new blood-based assay specific to DMG, we aim to dramatically improve our ability to track the effects of treatment on this devastating disease. We will exploit extracellular vesicles (EVs) — small “bubbles” shed by cells — as surrogate markers of therapy response in DMG patients. EVs contain molecular contents (e.g., protein, RNA, DNA) from their mother cells. Tumors shed large quantities of EVs into the bloodstream, offering a potential new way to monitor treatment in DMG patients. We will develop a new assay platform that integrates cutting-edge developments in materials, optics, and deep learning AI into a single system for efficient EV analysis and test whether our platform reliably predicts drug response in DMG patients. Our approach has the potential to transform DMG therapeutic trials and clinical practice, and its flexibility may lend itself to other types of pediatric and adult cancers.

 

Location: University of Michigan Rogel Cancer Center - Ann Arbor, MI
Proposal: High-throughput, Multiplexed Profiling of EVs in Pediatric Glioma to Predict Treatment Response
Mailing List Mailing List
Close Mailing List