Mark Awad, MD, PhD

Funded by Lloyd Family Clinical Scholar Fund

About 5% of non-small cell lung cancers (NSCLCs) have DNA mutations in the anaplasticlymphoma kinase (ALK) gene, and patients with this “ALK-positive” subtype of lung cancer are typically young and have never, or only lightly, smoked. For ALK-positive NSCLC, there are a number of FDA approved oral ALK inhibitor pills, including alectinib, lorlatinib, and brigatinib. While these targeted therapies are initially very effective, the benefit of each of these drugs is usually limited to only a few years because ALK-positive lung cancers almost always develop drug resistance through a variety of complex mechanisms. Although PD-1 inhibitors such as pembrolizumab (Keytruda) have revolutionized the treatment of lung cancer in general, particularly in smoking-associated cancers, most patients with ALK-positive lung cancer do not respond to existing immunotherapies.

We developed an ALK vaccine immunotherapy, composed of small pieces of the ALK protein, which is an effective treatment in animal models of ALK-positive lung cancer. We now plan to launch a first-in-human clinical trial to test this ALK vaccine in patients whose cancer is growing despite treatment with an ALK inhibitor. The vaccine will be tested in combination with an approved ALK inhibitor or with an approved immunotherapy (nivolumab). We will also study immune cells in the blood and in tumor biopsies both before and after vaccination to ensure that this novel therapy is generating a proper anti-ALK immunologic response as we would expect. Our goal is to develop a safe and potent ALK vaccine to improve outcomes for our patients.

Location: Dana-Farber/Harvard Cancer Center - Boston
Proposal: Development of a therapeutic vaccine for ALK+ NSCLC
Mailing List Mailing List
Close Mailing List