Vered Stearns, M.D. & Roisin Connolly, M.D.

Funded by the Stuart Scott Memorial Cancer Research Fund

Antibody treatments that block ‘immune checkpoints’ which prevent the immune system from fighting cancer, have resulted in impressive tumor shrinkage and long term survival in many patients with cancer. Results from studies in metastatic triple-negative breast cancer (TNBC) indicate promising activity but not yet the exceptional results seen in tumors known to be highly “immunogenic” or responsive to alterations in the immune system. Strategies to make TNBC “immunogenic” are therefore of great interest as they may result in long term control of TNBC. This is of particular relevance to minority groups such as the African American population, who often present with an aggressive TNBC with limited treatment options available.

Our collaborators at Johns Hopkins have laboratory data, suggesting that combining the histone deacetylase (HDAC) inhibitor entinostat with immune-checkpoint blockade (nivolumab and ipilimumab) led to eradication of breast tumors and long term cures. Research suggests that entinostat may alter the tumor environment by affecting the regulatory immune cells which can prevent immune-checkpoint agents from fighting cancer. This combination may thus be able to convert these traditionally “non-immunogenic” tumors into tumors which can respond to immune therapy.

We are thus conducting a phase I clinical trial of entinostat, nivolumab +/- ipilimumab in advanced solid tumors and patients with TNBC. We anticipate that the collection of blood and tumor specimens during the study will allow us to determine how these drugs are working in patients so we can develop future trials with the hope of significantly improving outcomes for patients with TNBC.

Victoria Bae-Jump, Ph.D., M.D.

Funded by the Stuart Scott Memorial Cancer Research Fund

Obesity and diabetes are associated with increased risk and worse outcomes for endometrial cancer (EC). African American (AA) women suffer a higher mortality from EC than Caucasian (CAU) women, and this may be in part due to greater rates of both obesity and diabetes among AA versus CAU patients. Metformin is a drug used in the treatment of type 2 diabetes. Our preliminary data finds that metformin has anti-cancer activity, due to its indirect effects within the body (decreased insulin/glucose) and direct effects on EC cells through inhibiting signaling pathways involved in metabolism, including suppression of fatty acid/lipid biosynthesis. Thus, it is logical that metformin may break the link between obesity and EC and emerge as a new targeted agent for the treatment of this cancer.

Our overall goal is to assess the contribution of indirect effects (via decreasing insulin and glucose levels) and direct effects (via inhibition of metabolic pathways and blunting of fatty acid/lipid biosynthesis) of metformin to its overall anti-cancer efficacy in (i) a clinically relevant EC mouse (obese/lean) model and (ii) an ongoing randomized phase 2/3 clinical trial evaluating metformin versus placebo, in combination with standard of care paclitaxel/carboplatin for the treatment of EC. We hypothesize that predictors of metformin response will include both molecular and metabolic biomarkers, specifically obesity, insulin resistance, upregulation of insulin/glucose signaling and heightened fatty acid/lipid biosynthesis, and this response may differ according to race. From this work, we hope to validate metformin as an innovative treatment strategy for obesity-driven EC.

Valsamo Anagnostou, Ph.D., M.D.

Immune targeted therapies, which stimulate the immune system to attach cancer have revolutionized
cancer treatment strategies. These successes have offered new therapeutic avenues for cancer patients,
especially for those with lung cancer. Despite the impressive clinical efficacy and duration of responses
observed, the fraction of patients with durable responses remains in the order of 20% and there is
therefore an unmet need to maximize efficacy of these treatments as well as identify the patients more
likely to respond. We propose to use clinical samples from 2 novel clinical trials that combine immune
targeted therapy with a different class of medicines, called epigenetic therapy. We have shown that
epigenetic therapy may attract immune cells to the cancer site therefore “priming” an anti-tumor immune response. We propose to pinpoint the mechanisms that mediate response and resistance to these therapies by looking at the genetic make-up of cancer cells as well as by studying the tumor microenvironment. We believe our comprehensive, cutting-edge scientific approach linked with ongoing or soon to start clinical trials will result in immediate clinical intervention initiatives and is consistent with our mission to deliver improved treatments to patients with lung cancer.

Stephan Grupp, Ph.D., M.D.

Funded by the Dick Vitale Gala in Memory of John Saunders

Immunotherapy has given hope to many patients with previously incurable cancers. One of the strongest new immunotherapy techniques is CD19-targeted cell therapy. This is a method of engineering T cells from a patient to attack their own cancer. B-ALL, a type of leukemia, is the most common cancer in kids. In B-ALL, CD19-targeted cell therapy has put over 90% of relapsed patients into remission within a month of receiving these engineered T cells. One problem is that some patients’ cancers learn to hide the CD19 target that these engineered T cells see. The lack of the target allows the cancer to hide from the T cells and come back. This can happen in more than 20% of patients. With this grant, we will explore an alternative target called CD22. CD22 is on more than 90% of B-ALL cells. We will use a combination of CD19-targeted T cells and a drug called inotuzumab that attacks CD22 to prevent the cancer cells from coming back, even if they can hide the CD19 target. We will also develop T cells to target CD22. First, we will move forward with a combination approach using the CD19 cells and the CD22 drug in B-ALL patients. Later, we may use T cells against both CD19 and CD22. Currently, bone marrow transplant is the best option for kids with relapsed disease, but this comes with many risks. As we increase the number of patients remaining in long-term remission with these cell therapies, we can see a future where fewer patients need to undergo the risks of bone marrow transplant.

Mailing list button
Close Mailing List