Jessica Stark, PhD

The immune system is your body’s resident doctor. Immune cells constantly examine the organs and tissues in your body. Most of the time, immune cells eliminate damaged or infected cells before they can make you sick. However, this process goes wrong in cancer. We now know that tumors use multiple strategies to hide from immune cells so that they can grow and spread throughout the body.

A new kind of medicine, called immunotherapy, teaches the immune system to recognize and destroy cancer. Some patients treated with immunotherapy cleared their tumors and remained in remission for decades – the closest we’ve come to a cancer cure. However, most patients with colorectal cancer, the second deadliest cancer in the US, do not benefit from existing immunotherapies. It is thought that these patients’ cancers have developed different or additional strategies to hide from immune cells – but how?

One way that immune cells examine cancer cells is by detecting the sugars, or glycans, they display on their surfaces. It was recently discovered that colorectal tumors decorate their surfaces with sugars that trick the immune system into thinking the tumor cells are healthy cells. Thus, glycans are emerging as a main strategy used by colorectal cancers to evade the immune system. This project will develop medicines that target these glycans as a new kind of immunotherapy. Our hope is that medicines targeting sugars can help improve outcomes for all patients with colorectal cancer.

Carla Nowosad, PhD

Immune cells are always patrolling our intestines, even when we are healthy. This includes B cells, which produce antibodies. Antibodies are floating molecular fire extinguishers which bind to and neutralize infections. In our intestines, huge amounts of antibodies are made every day. These bind to the ‘friendly’ bacteria that we live with to make sure they are well balanced, which keeps us healthy. In inflammatory bowel disease (IBD), the intestine becomes damaged by the immune system and antibodies change which bacteria they bind to. This turns the population of gut-bacteria from friendly to harmful, and can cause IBD to become colorectal cancer.

We do not know which B cells make cancer antibodies, or how antibodies make bacteria harmful. To understand this, we need to know how dangerous B cells become selected to produce the antibodies that turn IBD into cancer. This requires special tools to tell the helpful cells apart from the harmful ones. We built mice with multicolored B cells so we can follow the B cells that become hijacked during IBD and cancer. We may then understand where cancer-causing antibodies are made, and what they bind to. By doing this, we hope to compile a list of common antibodies that are always made before IBD becomes cancer, and look for them as warning signs in IBD patients. This could give doctors more time to treat high-risk patients before tumors form. In the future, we hope our findings help design new cancer drugs to delete harmful B cells.

Josephine Taverna, M.D.

One challenge of lung cancer treatment is that cancer cells thrive in a tumor ecosystem (or habitat) that protects them. This tumor ecosystem consists of immune cells, blood cells, connective tissue that allow lung tumors to grow and spread to organs (brain, bones, liver, lungs). We recently discovered that PD1, AXL and STAT3 signals in lung cancer serves as “on switches” that drive lung cancer growth, treatment resistance and spread to organs. More importantly, these cancer signals allow cancer cells to communicate with nearby cells for protection. We found that blocking PD1, AXL and JAK signaling can block communication between tumor and non‐cancer cells in tumorecosystem. Our research team would like to perform mouse experiments and clinical trial using drug combinations that turn off these signals and disable the tumor within its habitat, thereby preventing tumor growth and spread. This therapy could help improve survival for our patients with lung cancer.

Andrea Cercek, MD

Funded with support from Dave and Rhea Benson in honor of Angela Sbarra

The rates of rectal cancer are increasing in young adults. Treatment for rectal cancer includes chemotherapy, radiation, and surgery. These therapies can have a negative effect on the quality of life of survivors. Radiation can cause infertility and problems with bowel and bladder function, as well as sexual health. Up to one third of the patients need a permanent colostomy so they do not have normal bowel function. Due to these issues, there has been an interest in finding ways to improve treatment for rectal cancer so that radiation and/or surgery may not be necessary. One way we are trying to improve treatment of cancer, including rectal cancer, is with immunotherapy. Immunotherapy empowers the patient’s own immune system to fight cancer. When this happens, it is very effective. Funding from the V Foundation will support a clinical trial that will treat rectal cancer that is mismatch repair proficient with immunotherapy first. The project team believes that improved immunotherapies like Botensilimab (anti CTLA4) and Basltilimab (PD-1), and earlier treatment before the tumor has spread, will lead to responses. This research has the potential to change the treatment paradigm of all early-stage rectal cancers and omit radiation and surgery in those patients whose cancers disappear with immunotherapy and chemotherapy alone. This will be an important finding for patients’ quality of life. It will also teach us how to make the immune system work against cancers where it has not worked in the past.

Alejandro Villarino, PhD

Funded in partnership with Miami Dolphins Foundation

Blood cell cancers often bear mutations in STAT3. This protein is normally beneficial but, when overactive, becomes a cancer ‘driver’. More than 150 relevant mutations have been identified but only 7 have been studied in any detail. Thus, it remains unknown how mutations alter STAT3 activity to drive blood cancers. In fact, the same can be said of most oncogenes. The capacity to identify mutations far exceeds the capacity to appraise them. Our research will directly address this problem. To that end, we have devised an experimental platform that enables us to study all known STAT3 mutations at once. This platform is scalable, new mutations can be easily added, and readily adaptable to other cancer drivers. It is also designed to be implement in mice, allowing us test drugs in vivo, across all mutants at once. Using this platform, we will advance basic understanding of STAT3 and inform treatment options for associated blood cancers.

Christine Eyler, MD, PhD

Every year, over 40,000 people are diagnosed rectal cancer in the US. Many of these patients will receive radiation treatment. Sadly, radiation does not cure all rectal cancers. Many non-genetic, or “epigenetic,” factors control how cancer cells are built and how they respond to treatment. Often, these factors mimic biology seen in normal, non-cancer cells. Radiation causes normal intestine cells to change into stem cells that repair damage. We suspect these radiation-induced stem cells also occur in rectal cancer. We propose to test whether these radiation-induced stem cells cause rectal cancer to resist radiation. We will also map out the epigenetic factors that allow these stem cells to arise. To do this we will use new methods we have developed to show the fine details of epigenetic regulation. From our data, we will discern new mechanisms of rectal cancer radiation response. We hope these studies will yield novel treatments to combine with radiation for rectal cancer.

Melissa Reeves, PhD

Funded by the Stuart Scott Memorial Cancer Research Fund

Cancer immunotherapy, which uses a patient’s own immune system to fight cancer, has been very successful for some patients. But not everyone benefits. The immune system is made up of both immune cells that are both “good” and “bad” at fighting cancer. T cells are important “good” cells because they can kill cancer cells. Macrophages, however, can limit how well T cells can kill. Our lab studies how immune cells respond to cancer. In particular, we are interested in how different regions of the same tumor can have different immune cells in them. This means that some regions can have a good immune response, while at the same time, other regions have a bad response. We want to understand how the “bad” immune response regions form and how to fix them. We have identified a molecule called Cx3cl1 that some tumor cells make, which attracts “bad” macrophages. In this project, we will use a model system to study how Cx3cl1 interacts with macrophages. We will study areas of a tumor that have lots of Cx3cl1, and what happens to them when the tumor is treated with immunotherapy. We will also look at Cx3cl1, “bad” macrophages and “good” T cells in different regions of patient tumors. Our ultimate goal is to bring a “good” immune response to all regions of a tumor, so that immunotherapy will work better.

Caroline Bartman, PhD

Cancer is dangerous because it grows out of control in the body. Cancer needs to consume nutrients to make the energy to grow. We discovered that colon cancer makes energy very slowly. Because of this, we want to try blocking energy production to kill the colon cancer.

We found that colon cancer has a very low level of Vitamin B1, which is required for the major energy producing pathway in colon cancer. We will test three different ways to take away Vitamin B1 to see if this could stop colon cancer. We will also try to find why colon cancer has so little Vitamin B1. In future, if our hypothesis is right, maybe colon cancer patients could eat a diet low in Vitamin B1 to strengthen the effects of anti-cancer drugs they receive.

Maria Abreu, MD

Funded in partnership with the Dolphins Cancer Challenge (DCC)

In recent years, colorectal cancer (CRC) has become the third most common and second most deadly cancer in the US. CRC is the leading cause of cancer death among Americans under 50 years old, but experts do not know why rates are increasing among young people. Moreover, we do not have a good way of detecting people who are at higher risk of CRC. These people should receive early monitoring and undergo extra measures to prevent CRC. How can we identify these at-risk individuals? We propose that certain bacteria cause the production of an enzyme (DUOX2) in the gut. High levels of this enzyme are found in people with gut inflammation and people with CRC. In the proposed research, we plan to test whether patients with different types of CRC have different levels of DUOX2. We expect that some CRC types will have higher levels than others. Next, we will try to identify the bacteria that lead to high DOUX2 levels. Discovering these bacteria may help to identify people at higher risk of CRC (people with higher amounts of these bacteria) and suggest new cancer treatments (ones targeting these bacteria). Finally, we will test whether drugs that are already approved for use in humans, along with other products of bacteria, can reduce levels of DUOX2 in the gut. Identifying these drugs may improve prevention and treatment for CRC.

Xueqiu (Chu) Lin, PhD

Funded with support from Steve and Tamar Goodfellow

Colorectal cancer (CRC) is the third most common cancer worldwide and ranks as the second leading cause of cancer-related deaths. Screening plays a key role in early detection and makes CRC one of the most preventable cancers. Developing an accurate risk prediction score is crucial because it helps us identify and focus on those at high risk from a young age, enabling early screening and effective intervention. Research has shown that thousands of genetic mutations can increase the risk of developing CRC. Our goal is to convert these genetic discoveries into useful tools for clinical use. We plan to utilize advanced techniques such as CRISPR screening technology and single-cell sequencing, combined with deep learning models and statistical analysis. This approach will help us understand the whole impact of these genetic mutations better. This work aims to provide deeper insights into how these mutations contribute to the development of CRC, leading to more targeted and efficient screening strategies. Ultimately, our research is directed toward developing a sophisticated method for predicting colorectal cancer risk, focusing specifically on those who are most at risk. This could significantly change how we prevent and treat colorectal cancer.

Mailing list button
Close Mailing List