Uri Tabori, M.D.

Funded by the Dick Vitale Pediatric Cancer Research Fund

There is a unique group of cancers that progress quickly during childhood due to faults in the mechanisms which repair damaged DNA. As a result, these childhood cancers have the highest number of DNA mutations (hypermutant) of all human cancers. Immunotherapy has demonstrated hopeful results in these patients. Yet, 50% of these cancers will progress after initial response to immunotherapy. This poses a significant problem. Adoptive cell therapy takes advantage of using immune cells to kill cancer cells. Cell therapy has shown promising responses in many adult cancers. This effect is greater when cell therapy is used in combination with prior immunotherapy treatment. Our research team has developed new mouse models that successfully mimic these childhood brain cancers. One of the aims of our research project is to use these mouse models to study the role of cell therapy. We will determine overall survival and response to therapy. We aim to prove the feasibility of expanding childhood immune cells as a proof of concept through the use of our International Consortium. We will use complex computer software and genomic tools. These methods will provide a thorough review of immune cells. We will be able to predict which patients would benefit from cell therapy. This project will increase knowledge in this research area. In addition, it will answer important questions which will lead to improved patient outcomes and treatment options. Most importantly, this project will lead to the first-ever childhood cell therapy clinical trial.

Location: Garron Family Cancer Centre at SickKids in Toronto - Ontario
Proposal: Biological and pre-clinical studies to enable TIL therapy clinical trial in pediatric hypermutant cancers
Mailing List Mailing List
Close Mailing List