Jamie Spangler, Ph.D.

Funded by the Constellation Gold Network Distributors

Only a limited number of proteins are found in nature, and many of them have multiple different functions that clash with one another, which makes them poor drugs. There is a growing interest in engineering existing proteins or designing brand new proteins that are better than the ones in nature. Most current methods for protein design use a random approach. However, as our understanding of protein structure improves, we have an exciting chance to use structure to guide design. My lab applies new tools from biology and engineering to figure out the mechanisms that control protein behavior. We then use this information to discover and develop better drugs.

One of the biggest cancer breakthroughs is immunotherapy, which activates the patient’s own immune system to fight disease. My lab aims to bias the activity of immune proteins in order to achieve a targeted response against cancer. For more than twenty years, immune proteins such as cytokines and antibodies have served as powerful weapons in cancer treatment, but they are limited by issues such as drug resistance and harmful side effects. As a result, there is an unmet need to create new proteins that overcome these challenges. Building on our lab’s insights and platforms we have designed, we will make a new protein drugs that act through unique pathways to induce potent anti-cancer immune responses.

Adam Shlien, Ph.D.

Funded by the Dick Vitale Gala in memory of Chad Carr

Cancer is the leading cause of disease-related death of children past infancy in North America. All cancers contain mutations in their DNA, but the causes of these mutations are usually not known. This gap in our knowledge negatively impacts patient care: It is difficult to predict how a tumor will change – how it will respond and whether it will come back – if one does not understand why or how it developed in the first place. Recently, our lab and others have shown that some childhood cancers contain a fingerprint which can be used to pinpoint what caused its mutations and when they developed. The identification of these fingerprints, or mutational signatures, is a rapidly evolving area of research that has benefited from new technologies, such as whole genome sequencing. This project will identify mutational signatures in aggressive childhood cancers. We will seek to understand whether cancer- causing mutations have common fingerprints, and if these can be used to select patients that would benefit from ongoing clinical trials.

Lewis Shi, M.D., Ph.D.

Volunteer Grant funded by the 2018 V Foundation Wine Celebration in honor of John and Biserka Noval

Cancer is a leading global health concern. Until recently, cancer patients are normally treated with surgery, pharmaceutical reagents that can kill tumor cells (chemotherapy), and radiation (radiotherapy). In recent years, scientists and doctors have been trying to improve patients’ own immune function to combat cancer, known as immunotherapy. Cancer cells can fool the immune system by expressing some markers that can inhibit immune function. These markers are called “immune checkpoints”, including CTLA-4 and PD-1. Subsequently, blocking “immune checkpoints” with reagents (anti-CTLA-4 and anti-PD-1) could enhance immune function and result in impressive curative effects in some patients with cancer. Yet, a lot of patients do not respond to anti-CTLA-4 and anti-PD-1. In order to broaden the patient populations that can benefit from these novel reagents, we plan to change the metabolic features of the microenvironment that tumor cells live in. We hope doing this will improve the function of immune cells, which then causes non-responsive tumors to respond to anti-CTLA-4 and anti-PD-1 treatment. Our studies might also identify some markers that can help doctors in selecting the right patients for these therapies. Our long-term goal is to translate our findings from bench to bedside by designing clinical trials to test combination therapies, particularly in cancer patients that have been non-responsive to anti-CTLA-4 and anti-PD-1 therapies.

Paz Polak, Ph.D.

Vintner Grant funded by the 2018 V Foundation Wine Celebration in honor of Gina Gallo

One of the deadliest cancers is called Triple Negative Breast Cancer (TNBC). Women with TNBC are more likely to die of breast cancer than women with other types of breast cancer. This type of cancer is more common in African American women.

Treatments for TNBC exist, but we do not know if they are equally effective for all women with TNBC. One reason the outcome might be poorer for African American women is because the standard treatments might be less effective for them. Treatments for TNBC work better when a woman has a certain mutation in gene called BRCA1 and related genes known as RAD51 genes. Unfortunately, this treatment may not work if the gene has been turned off by a mechanism called methylation. This process of methylation is much more common in African American women. In this proposal, we want to find out how frequent methylation of BRCA1 and RAD51 genes occurs in Caribbean populations and then compare the response to TNBC treatment for African American, Caribbean American and European American populations. We hope to find how frequently BRCA1 gene is turned off in breast cancer patients of Caribbean origins and then use this knowledge to assist in the choice of targeted therapy for these patient populations.

Mary Philip, M.D., Ph.D.

Primary liver cancer is a leading cause of cancer death worldwide. Liver cancers are resistant to many cancer drugs. Our immune system has enormous power to find and destroy infectious microorganisms in our bodies, and scientists reasoned that immune cells such as T cells could also find and destroy cancer cells. Using a mouse model of liver cancer, we found that T cells could recognize cancer cells in the liver, however the T cells failed to kill the cancer cells. We discovered that interactions between liver cancer cells and T cells quickly restructured T cells’ DNA. DNA is the program that controls how cells respond and function.  The DNA restructuring in T cells took away the T cells’ ability to kill cancer cells. Our goal is to understand how the interaction between liver cancer cells and T cells makes T cells dysfunctional. We are working to develop a three-dimensional liver cancer model in cell culture dishes. We can add T cells to precisely study the earliest changes in T cells after they encounter a liver cancer cell. This will give us clues about why the T cells are shut down their anti-tumor function. We will then test DNA targeting strategies to see if they prevent T cells from becoming dysfunctional. Ultimately, these genetic targeting strategies can be used to activate T cell responses against cancer cells in patients with liver cancer. 

Selma Masri, Ph.D.

Funded in memory of Bob Moonan

Of the cancers that affect both men and women, colon cancer is the second leading cause of cancer deaths and the third most commonly diagnosed cancer in the United States. Interestingly, evidence from the clinic links disruption of normal 24-hour rhythms with many diseases including a higher risk of cancer. Our internal clock controls sleep/wake cycles, feeding and metabolism and disruption of the clock has been reported in several cancer types, including colon cancer. Yet, the precise process of clock disruption in colon cancer remains undefined. We are interested in cells that have the ability to initiate tumors because these cells have been found to be treatment resistant. We propose to determine how loss of the clock can promote colon cancer by changing the cues that direct these cells that initiate cancer. To accomplish this, we have generated a mouse model to understand the effects of clock disruption on cell growth in the intestine. We propose that disruption of both the clock and loss of cues that control normal cells in the intestine can result in colon cancer. The goal of these studies is to provide new directions towards clock-dependent treatments that can target colon cancer.

John Maciejowski, Ph.D.

Vintner Grant funded by the 2018 V Foundation Wine Celebration in honor of Lauren Ackerman

Cancer is considered a disease of the genome because the acquisition of genomic alterations can spur disease progression by disrupting natural checks and balances on cell growth and behavior. These alterations are often a result from exposure to environmental factors, such as UV light or tobacco carcinogens. They also arise as a byproduct of normal physiological processes. One of the most common alterations detected in cancer genomes are mutations that have been linked with our endogenous APOBEC enzymes. The APOBECs normally protect against viral infection by inducing mutations in viral genomes. It is not clear why this potent mutagenic activity turns against our own genomes in the context of cancer. We seek to understand how the anti-viral APOBECs become activated to attack our own genomes and to determine how this activation leads to mutation and cancer growth. We will draw on conceptual parallels between viral infection and cancer-intrinsic processes to gain insights into the mechanisms that drive APOBEC activity in the cancer setting. Our work will set the stage for the development of therapeutic interventions to blunt or leverage this mysterious mutational process.

Jens Lohr, M.D., Ph.D.

Multiple Myeloma is a cancer of the bone marrow that cannot be cured. Patients typically receive many different therapies that work initially but some myeloma cells always remain, eventually leading to relapse. This is due to enormous genetic diversity of myeloma in each patient that also changes with every treatment, ultimately leading to outgrowth of drug-resistant myeloma cells. It is therefore crucial to understand why myeloma cells persist despite drug treatment and define the genomics and molecular mechanisms of drug resistance. To do so would require frequent access to myeloma cells from bone marrow biopsies. However, the current standard of care, a bone marrow biopsy from a single site at time of diagnosis, is not sufficient to capture the diversity and constant evolution of myeloma. We are proposing to use novel “liquid biopsy” approaches we developed to replace bone marrow biopsy using circulating multiple myeloma cells and cell-free myeloma DNA that we obtain from a simple blood draw. Our hypothesis is that liquid biopsy will allow us to obtain more comprehensive genomic characterization of myeloma than bone marrow biopsy, with less risk and discomfort for patients. With the use of novel technology we can also obtain comprehensive genomic and molecular information from very few cells when patients are in remission and no myeloma is detectable with conventional methods. We can use this technology to test if genomic events that cause drug resistance predict relapse. These approaches may replace bone marrow biopsy and identify molecular mechanisms that drive resistance to therapy.

Pengda Liu, Ph.D.

Prostate cancer is currently the second leading cause of cancer death in men in USA. Although surgical intervention and other first-line therapies for prostate cancer have improved over the past decades, there is still no effective cure for patients suffering from advanced/recurrent disease. Prostate cancer, like other cancers, is a heterogeneous disease such that individualized/precision medicine is likely to benefit patients. Our data indicate that a subset of prostate cancer exhibits reduced expression of a protein (cGAS) known to be involved in the response of cells to viral or bacterial infection. Importantly, lower expression of cGAS is correlated with prostate cancer recurrence, suggesting that loss of cGAS reduces efficacy of therapy. Interestingly, low cGAS is associated with poor outcome in lung cancer as well. In this proposal, we present preliminary data strongly supporting novel tumor suppressor roles of cGAS in prostate cancer functioning in individual cancer cells. We will fully investigate the underlying regulatory mechanisms and biological effects of the loss of cGAS in prostate cancer, along with the initial exploration of therapeutic vulnerabilities associated with this dysregulated pathway. We are hopeful that our studies will enable new therapeutic options for prostate cancer patients, with potential relevance to a subset of lung cancer.

R. Coleman Lindsley, M.D., Ph.D.

Cancers develop changes in their genes, as well as changes in parts of the cell that control genes. BCOR is a gene that regulates cells by controlling genes, and is changed in a wide range of cancers affecting the blood and organs. By studying a group of more than 20,000 patients with cancer, we saw that the type of BCOR mutation found in a cancer depends on the tissue in which the cancer arises, suggesting that BCOR may have a range of different roles. In patients with endometrial cancer, BCOR mutations are common, and affect a specific part of the gene. The first goal of our study is to describe the clinical impact of BCOR mutations in a large group of patients with endometrial carcinoma. The second goal is to understand how BCOR mutations affect the function and contribute to cancer in cells from different tissues.

Mailing List Mailing List
Close Mailing List