Ulrich Steidl, MD, PhD

Acute Myeloid Leukemia (AML) is a fast-growing blood cancer that is very hard to treat. Fewer than 20% of patients live more than five years after being diagnosed. One big problem is that AML often comes back after treatment or stops responding to chemotherapy, which is the main reason people die from this disease. Most research has looked at genetic changes that help cancer cells resist treatment, but new studies show that non-genetic changes also play an important role.Our research focuses on one of these non-genetic factors called “transcriptional noise.” This means natural changes in how genes are turned on and off in cells. Using advanced tools that look at single molecules, we found that chemotherapy causes a quick increase in this transcriptional noise. This seems to help leukemia cells survive the treatment. When we blocked this noise—by targeting an enzyme called Pol II that controls gene activity—the leukemia cells became more sensitive to chemotherapy. We saw this in lab tests and in mouse experiments. We also found that certain “early response” genes—genes that react fast to chemotherapy—show a lot of this noise, which means they could be new targets for drugs. Our future research will try to figure out exactly which genes are involved, how this noise helps cancer resist treatment, and which types of AML can be treated better by blocking transcriptional noise. This new approach could lead to better ways to stop drug resistance in AML and other cancers, giving patients hope for more successful treatments in the future.

Britta Will, PhD

Acute myeloid leukemia (AML) is a deadly blood cancer that starts in the bone marrow, where our blood cells are made. This cancer is especially dangerous for people over 65 – more than 9 out of 10 patients die from it. The treatments we have now work for a while, but then they stop working. This happens because some cancer cells are tough and can survive the treatment, causing the cancer to come back. Scientists have discovered something important about how these cancer cells survive. They found that the way cancer cells use iron helps them fight off treatment. Iron is a mineral our bodies need, but cancer cells change how they handle iron to stay alive when doctors try to kill them. We believe that iron helps cancer cells resist drugs that are supposed to make them grow into normal, healthy blood cells. We made an exciting discovery: when they used drugs that grab onto iron, the cancer cells became much easier to kill with regular treatments. This seems to work on many different types of this blood cancer, even the hardest ones to treat. We plan to test this new approach by mixing iron-grabbing drugs with current treatments. We will use real cancer cells from patients to see if this combination works better. We want to find out if it can really get rid of the cancer stem cells (the “parent” cells that keep making more cancer). If this research works, doctors could have a new way to treat older patients with this blood cancer. Many older patients can’t get bone marrow transplants because they’re too risky. By targeting how cancer cells use iron, doctors might be able to beat treatment resistance and help patients live longer without using harsh chemotherapy drugs.

Agnel Sfeir, PhD

Cells use DNA repair systems to fix damage and keep their DNA stable. When these systems fail, it can lead to cancer and make treatment harder. One toxic type of damage is a double-strand break (DSB), where both strands of DNA are cut. In healthy cells, DSBs are usually fixed by a process called homologous recombination (HR). This method is very accurate. Some tumors, especially those with BRCA1 or BRCA2 mutations, lose the ability to use HR. These tumors rely on backup repair methods that are less accurate. One of these is called microhomology-mediated end joining (MMEJ). MMEJ fixes breaks by using short, matching DNA sequences, but it often adds or deletes small sections of DNA.MMEJ depends on an enzyme called polymerase theta (Polθ), which is found at high levels in many cancers. Research shows that BRCA-deficient tumors need Polθ to survive. Because of this, Polθ is now being tested as a drug target, alone and with PARP inhibitors. This project studies how MMEJ helps cancer cells resist treatment. We focus on two key ways. First, MMEJ can create changes that fix BRCA1 or BRCA2, which restores HR and reduces the effects of PARP inhibitors. Second, MMEJ may support the growth of extra circular DNA (ecDNA) that carries cancer genes. This makes tumors grow faster and resist therapy. By understanding how Polθ drives these changes, we hope to find new ways to treat cancer and make current therapies last longer.

Tannishtha Reya, PhD

Acute Myelogenous Leukemia (AML) is a fast-growing cancer of the blood and is the most common type in adults. Unfortunately, current treatments often don’t work well, and many patients get sick again or die. That’s why new and better treatments are needed. In our research, we looked at a protein that is found in large amounts on the outside of leukemia cells. Our earlier studies showed that this protein is needed for the cancer to grow. Because it’s on the outside of the cell, we can try to block it using special tools called antibodies. These antibodies attach to the protein and stop it from working. Here, we propose to develop an antibody that is able to target the protein and stop the cancer cells from growing. If we are successful, we plan to test the antibody in patients who are newly diagnosed or who haven’t gotten better with current treatments. This new antibody treatment could be a powerful new way to help people with AML live longer and healthier lives.

Rachel Niec, MD, PhD, MS

Our bodies are constantly exposed to a multitude of challenges, such as microbes, toxins, and injuries, especially at barrier surfaces like the skin, lungs, and intestines. These tissues serve vital and complex functions in shielding us from environmental threats while also managing body moisture, oxygen levels, and nutrient absorption. For instance, the intestine must delicately balance the elimination of harmful microbes and toxins with the absorption of essential nutrients. This requires intricate cooperation between the intestinal lining cells and the intestinal immune system. Barrier tissues, like the intestine, are particularly prone to inflammation and cancer.

Inflammatory bowel diseases are chronic inflammatory conditions affecting the intestines. They result from an interplay of genetic and environmental factors, leading to dysregulated functioning of intestinal cells and immune system. These incurable diseases can significantly increase the risk of developing colon and rectal cancer. Yet, the mechanisms through which environmental factors and inflammation impact the immune system and cells of the intestine to drive the progression of chronic inflammatory diseases and cancer remain largely unknown.

Within the Niec lab, innovative tools have been developed to investigate how immune cells and the intestinal barrier cells respond to environmental challenges and interact in disease. Through this project, we aim to unravel the alterations occurring in the immune system and the intestine during inflammation. By understanding these processes, we aspire to develop strategies to prevent and treat cancer that arises from inflammatory bowel disease.

Alex Kentsis, MD, PhD

Funded by the Dick Vitale Pediatric Cancer Research Fund

Malignant rhabdoid tumors and epithelioid sarcomas are rare cancers that can develop throughout the body. Sadly, these tumors are often deadly for patients who can’t have surgery or whose tumors don’t respond to chemotherapy. Recently, a new drug called tazemetostat has been approved to treat these cancers, but only about 15% of patients get better with it. Our new research project explores DNA damage repair and targeting its mediators in tumors cells to offer new treatments to patients. Our past research shows that a protein called ATR is important for the growth of tumor cells. It is possible that other similar proteins are necessary for tumor growth and is therefore important that we study them to understand if ES and MRT patients may benefit from other drugs that interfere with these processes. For example, we found that combinations of drugs, chosen logically based on research evidence, is more effective in controlling tumor cell expansion, when compared to using drugs alone. We plan to find the best combination of novel drug inhibitors to stop these tumors from growing. We also want to understand how these drugs work in the body so we can predict which patients will benefit the most. This research should lead to a new, safe, and effective treatment for many patients with RT and ES who currently have no cure. The findings might also help treat other types of childhood and young adult cancers, creating a roadmap for difficult to treat tumors.

Robert Wechsler‐Reya, PhD

Funded by the Dick Vitale Pediatric Cancer Research Fund with support from Hockey Fights Cancer and Jeffrey Vinik

Diffuse midline glioma (DMG) is a very aggressive brain tumor that occurs mostly in children. DMG treatment involves surgery, radiation, and chemotherapy, but most people with DMG don’t live longer than a year despite these treatments. We desperately need better therapies for this disease. Treating DMG is difficult because tumors aren’t the same in every person, so a drug that works for one person might not work for another. Therefore, we need treatments that are personalized for each patient. In addition, different parts of the tumor may not all respond to the same drugs, and we might need to use a mixture of drugs to eliminate the whole tumor. And even if we find drugs that do this in the lab, getting them into the tumor is tricky because of the “blood-brain barrier”, which prevents many drugs from getting from the bloodstream into the brain. We are proposing a new approach to DMG treatment that overcomes these challenges. To find individualized treatments, we will test many different drugs on tissue from surgery or biopsy to see which ones work best for each patient. We’ll also look at the effects of drugs on individual cells in the tumor and find the combinations of drugs that kill the most tumor cells. Finally, we’ll use a method called convection enhanced delivery (CED) to pump drugs directly into the tumor, bypassing the blood-brain barrier.  By using these approaches, we will find better treatments for DMG and other brain tumors in kids.

Elvin Wagenblast, PhD

Funded by the Dick Vitale Pediatric Cancer Research Fund

Our research focuses on a type of leukemia called B-cell acute lymphoblastic leukemia (B-ALL), which is most commonly found in children and adolescents. Despite advancements in treatment, a significant number of young patients do not respond well to existing therapies and face high risks of relapse. Our project specifically addresses those cases caused by changes in a gene called CRLF2, which are associated with poor outcomes. To understand and combat this challenging disease, we are using a cutting-edge technique called CRISPR/Cas9 to create detailed models of human blood cells that carry the same genetic changes seen in patients with CRLF2-related leukemia. These models allow us to study the disease in a controlled environment and understand the step-by-step development from the initial genetic changes in a human blood cell to full-blown leukemia. By examining these models at a microscopic level, using technologies that analyze individual cells, we aim to uncover new details about how these leukemias develop and find weak points where new drugs could intervene. Our goal is to identify new treatments that could target these leukemias more precisely and to explore ways to detect and perhaps prevent the disease before it fully develops. This research could lead to better survival rates and less suffering for children affected by this aggressive type of leukemia, providing hope for families facing this diagnosis. The knowledge gained could also help in understanding other similar types of childhood leukemias, broadening the impact of our work beyond B-ALL.

Karuna Ganesh, MD, PhD

Colorectal cancer is the second most common cause of cancer death. Immunotherapy is largely not effective in this disease. To work safely, it requires targets in tumors that are not also present in normal tissue. These are difficult to find. Our recent research shows that advanced colorectal cancers adopt a fetal-like state. This fetal-like state reactivates gene programs that are normally only expressed during early development. In normal adult tissues, these programs are turned off. This may make advanced cancer vulnerable. Reactivated fetal proteins could potentially be used as targets for new immunotherapies. Here we propose to study how these fetal proteins are recognized by the immune system. For this, we will use our unique and extensive biobank of organoids. Organoids are 3D cultures of cancer cells derived directly from patient tumors and normal cells. They are a more informative and realistic model of cancer than traditional cell cultures. We must first understand which molecules are shown to the immune system in cancer cells. We will then look for immune cells in the blood of colorectal cancer patients that can recognize the fetal molecules. This approach will ultimately lead to novel immunotherapies. These could help treat advanced colorectal cancer and related solid tumors.

Hemn Mohammadpour, DVM, PhD

Funded in memory of Lawrence and Patricia Shook

Multiple myeloma (MM) is a type of bone marrow (BM) cancer that remains a significant challenge to treat, despite therapy advancements. In this study, we aim to explore a new approach to enhance the effectiveness of standard MM treatments. Our focus is on a specific type of immune cells called myeloid cells, that play a role in tumor growth and immune evasion in MM patients. We observed that MM patients have an increase of a particular type of myeloid cell that express on their surface, a molecule called CXCR2, in the BM and places where the cancer has spread to bone: (osteolytic lesions). The myeloid cells may contribute to MM resistance to treatment and to evasion of the body’s immune system. Based on these findings, we propose a clinical trial to test a drug called SX-682, which targets CXCR2-positive myeloid cells. We will investigate whether adding SX-682 to standard MM treatment will improve patient outcomes. Our trial will focus on MM patients whose cancer has come back after initial treatment. The primary goal of our study is to assess the safety and tolerability of SX-682 with standard MM treatment. Additionally, we aim to understand how SX-682 affects the immune environment within the tumor and in the blood. By targeting CXCR2-positive myeloid cells, we hope to enhance the body’s ability to fight MM, improving patient survival. Our study represents a promising step towards developing more effective therapies for MM by harnessing the body’s immune system to better combat this challenging cancer.

Mailing list button
Close Mailing List