Andrew Hsieh, M.D.

Prostate cancer is the most common cancer among men in the developed world and there is currently no cure for its most deadly and advanced form, castration resistant prostate cancer (CRPC). The pervasiveness of this disease, particularly in minorities such as African Americans, highlights the importance of studying prostate cancer progression in order to develop effective new treatments. Historically, cancer research has focused on understanding how normal cells become cancer cells by accumulating alterations in DNA and RNA, the genetic material of a cell. However, these studies focus on only part of the overall process of gene expression, and neglect to take into account the ultimate end process of gene expression, protein production. Exciting discoveries from my lab and others have shown that the protein synthesis machinery is essential for cancer. This process can be hijacked by cancer, leading to grave consequences such as metastasis and drug resistance. Moreover, we have found that there is a remarkable therapeutic opportunity to drug cancerous protein synthesis without affecting normal cells in the body. The primary focus of our laboratory is to understand the fundamental connections between cancer and its protein making factories.  We will employ a convergence of state-of-the-art genetic tools and genome-sequencing strategies to study how abnormal protein production leads to CRPC and drug resistance. Our studies will help identify patients whose cancers are addicted to aberrant protein synthesis and will accelerate the development and application of cancer therapies that target this poorly understood, but vital cellular process in cancer patients.

 

 

 

Harlan Robbins, Ph.D. & Miriam Gutschow, Ph.D.

Funded in Collaboration With

Stand Up To Cancer (SU2C)

The last two decades have seen the development of increasingly effective cancer therapies that target different facets of transformed cells, including aberrant proliferation/survival, immune evasion, hyper-activated signaling pathways and dysregulated transcriptional programs. In a subset of cancers, including acute myeloid leukemia (AML) and non-small cell lung cancer with activating EGFR mutations, these therapies lead to dramatic clinical responses in a significant proportion of patients.

However, in the majority of AML and EGFR mutant lung cancer patients who respond to anti-cancer therapies, therapeutic relapse subsequently ensues, although often after a considerable interval, such that these responses do not lead to long-term cures. Often the relapsed tumors are infiltrated by adaptive immune cells (T cells). With the advances in immunotherapy, which utilize a patient’s own immune system to fight the cancer, it is possible to treat with immunotherapy after relapse. We are studying the T cell infiltrates before, during, and after relapse in both AML and NSCLC patients to determine if the response if the relapsed tumors have the characteristics of an immunogenic tum.

Aude Chapuis, M.D.

Research has advanced new anticancer drug therapies, saving many lives, but it is estimated that cancers will still kill more than half a million Americans specifically African and Hispanic Americans. New, safe and effective treatment approaches are urgently needed. Especially promising are treatments including cancer cells, through a large family of proteins called “T cell receptors” (AKA TCRs) which bind particular molecules associated with tumors Dr. Chapuis is an expert in identifying tumor antigens, genetically engineering matching TCRs, putting them in T cells and then infusing these enhanced methods to develop new engineered T cell therapies for patients for whom best available therapies are simply inadequate. For patients with non-leukemia patients, further optimizing methods that can also be used to target other antigens in tumors where WT1 is not expressed. She also proposes therapy after the safety of each is established for a broader future impact, including for other patients with urgent needs.

Mailing list button
Close Mailing List