While breast cancer in the United States is highest in white women, the mortality and incidence of more virulent forms of cancer are higher in black women. An under- representation of black women in clinical trials prevents a full understanding of how new drugs will potentially affect them and limits our effectiveness in treating future black women with breast cancer. The purpose of this research is to identify the specific reasons for low enrollment of black women in breast cancer trials in southeast Louisiana and develop means of addressing the barriers to participation.
Hormone therapy medicine helps lower the chance of breast cancer growing or coming back. African American breast cancer survivors say they lack information about hormone therapy. Women also say that side effects are a main reason for stopping hormone therapy. We are doing a study that will test a text message program for these women. Women who join the study will be randomly assigned to one of two groups. One group will get text messages and the other will not. The text messages have information to help women deal with side effects. We think the women getting texts will have fewer side effects and greater belief they can manage hormone therapy. We also think they will understand why hormone therapy is important. We think this will help women worry less about hormone therapy and continue taking it. With the V-Foundation funding, our main goal is to increase the number of women who join the study. We will use our current partnership with community members and social media to recruit more women. This is the first study to test a text message program for African American women on hormone therapy. It is also one of the first to use a community partnership and social media to recruit women.
This project aims to improve the enrollment of men with prostate cancer into studies that require specific changes in DNA in order to be eligible. The largest barrier to enrolling patients is obtaining information about their DNA. Current standards of practice do not have clear recommendations on when to test the DNA of men with prostate cancer. Insurance does not always cover the DNA testing needed to get this information. The University of Virginia has two research programs open that obtain DNA testing on men with prostate cancer. This grant will support the efforts of the Clinical Research Outreach Program at UVA to recruit men with prostate cancer into these research programs in order to obtain DNA testing on a greater number of men with prostate cancer.
The goal of “Campaign to Improve Access to Clinical Trials” at the University of Arizona Cancer Center (UACC) is to increase the clinical trial access to a diverse population in Arizona. Dr. Chalasani, Breast Cancer Disease Oriented Team Leader, will oversee the campaign to improves access by involving the breast multidisciplinary team, patient navigators and physician liaisons to develop educational materials and outreach programs. Patients and community physicians will be targeted through proposed outreach programs by developing targeted educational materials. Materials and training will be provided to introduce and educate about clinical trials to patients early by various members of their cancer team. The goal of this campaign is to become a model for other disease teams and cancer centers to implement to improve clinical trial enrollment.
Prostate cancer represents the second most common cancer in men and the fifth leading cause of death worldwide. African American men in the US are more likely to develop prostate cancer and more likely to develop aggressive types when compared to other races. Between 2012 and 2016, 179 out of 100,000 African American men compared to 104 out of 100,000 Caucasian men were diagnosed with prostate cancer African American men with prostate cancer have a 2.5-fold greater risk of death from the disease.
Racial disparities exist in many disease types, including cancer. The development of cancer and survival of the disease are likely to include many components, including later detection and treatment, genetic factors, differences in biology, and social factors. Participation in cancer clinical trials provides access to new therapies, including potentially life-saving experimental therapy in patients for whom options are limited and prognosis is poor. African American patients are underrepresented in clinical trials in general, and more specifically in prostate cancer trials. The aim of this project is to promote, facilitate, and foster participation of minorities (with special emphasis on the African American population) in ongoing and to-be-opened prostate cancer clinical trials at VCU Massey Cancer Center (MCC). This will be accomplished by identifying current barriers, by increasing awareness among patients and physicians about available opportunities offered by MCC, and by organizing a prostate cancer clinical trial team that will guide eligible patients through screening and clinical trial treatment.
Funded by the V Foundation’s Virginia Vine event, in honor of WWE Connor’s Cure
Drugs are needed to treat cancer. Clinical trials are done to make sure drugs are safe and effective. Individuals volunteer for clinical trials. In cancer clinical trials, the volunteers usually have cancer. Volunteers may also be young or old, male or female and rich or poor. The important thing is to get a mix of volunteers who are similar to the cancer patients who will take the drug. Not very many people participate in clinical trials. More white people participate than any other race. This means that we don’t always know whether drugs are safe and effective in all people. Also, we don’t know if people are getting equal opportunity to participate in clinical trials. This study will look whether patients at Inova Schar Cancer Institute know about clinical trials. This study will also develop a program to help make all people, no matter what race, aware of clinical trials.
Funded by 2019 Kay Yow Cancer Fund Final Four Research Award
Cancer in the ovaries is an aggressive and deadly disease with limited treatment choices. A crippled protective immune system is commonly found in patients with ovarian cancer and limits the effect of multiple treatments. We recently described a new therapy based on the transfer of immune T cells engineered to spot and kill ovarian cancer cells. These therapeutic cells are referred as FSH-CER T cells. Here, we propose a plan to boost the effects of FSH-CER T cells by promoting the growth of T cell subsets with a higher capacity to eliminate tumors. This will be done by the inhibition of key drivers of cellular stress. Thus, our data will set the basis for a therapy to efficiently treat ovarian cancer patients.
Funded in partnership with WWE in honor of Connor’s Cure
Brain cancer is now the leading cause of cancer deaths in children. A tumor known as high-grade glioma (HGG) is the deadliest type. Children with HGG are treated with surgery, chemotherapy, and radiation. They often enroll in clinical trials to try new treatments. Unfortunately, most children die within two years of diagnosis. Part of the problem is that HGG tumors develop ways to resist the effects of treatments. Our recent work using promising new glioma treatments has identified a pattern of steps that glioma cells use to develop treatment resistance. Using state-of-the-art genetic testing, we saw how HGGs at first responded to new therapies but then became resistant. Resistant HGGs showed increased levels of a protein called QPRT, which can use energy metabolites like NAD+ to protect cancer cells from the therapy designed to kill them. This suggests that by stopping the protein function, we could overcome treatment resistance. We want to achieve two aims: First: to see if QPRT is active in other commonly used treatments for HGG, and also if recurring childhood HGGs typically show high QPRT levels. Second, using tumor tissue that we cultured in the lab, we identified a drug that inhibits the NAD+ pathway and reverses treatment resistance. We want to test this drug in an animal model of treatment-resistant HGG to see if it can prolong survival. Together these aims would reveal a way that HGGs resist treatment and potentially show how a drug could block this action to overcome treatment resistance in these tumors.
Funded by the V Foundation’s Virginia Vine event, in honor of WWE Connor’s Cure
Cure rates for children with cancer are improving, but cancer still comes back for many kids after finishing therapy. When cancer comes back it is more difficult to cure, and new treatments are needed to help these patients. The best way to develop new treatments is to treat patients with new therapies while collecting detailed information about how they tolerate the treatment and if it gets rid of their cancer – this is called being treated on a clinical trial, a research study designed to learn about how new treatments work for patients. These studies that involve new treatments are usually only offered at large hospitals that are connected to medical schools, so many patients are sent away from their homes to receive these treatments. Others choose to stay closer to home and not receive the newest therapies for their cancer. Often, there are research studies closer to home than their doctors realize. Getting this information to the doctors in our region would help make sure patients receive the newest therapies for their cancers while staying close to home. This grant would allow us to travel to nearby medical practices to tell the doctors about the new therapies that we offer at UVA as part of clinical trials, especially treatments that are being developed that allow the patient’s own immune system fight their cancer (called “immunotherapy”). Spreading this information will hopefully increase the number of patients that are treated on these research studies, and help cure more kids of their cancer.
Funded by the V Foundation’s Virginia Vine event, in honor of WWE Connor’s Cure
Cancer in children is rare, accounting for less than 1% of all cancer cases in the USA. Clinical trials are used to determine the most effective and safest treatment for a disease and are commonly used in cancer treatment for children, adolescents, and young adults. The main reason that children are not enrolled on clinical trials is that there is not an open trial available. However, some nationally available trials could be opened faster when needed in local hospitals or cancer centers. Currently, the process is quite complicated and involves many steps. Our goal is to develop a “library” of available clinical trials that could be activated quickly on an as needed basis for children with rare tumors or with a cancer that does not respond to standard treatment. We will examine the barriers to rapid activation, educate the committees that are involved in clinical trial activation at our institution about the uniqueness of childhood cancer, and come up with a process for rapid clinical trial activation for childhood cancer at the Massey Cancer Center.
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.