Shizhen (Jane) Zhu, M.D., Ph.D.

V Scholar Plus Award – extended funding for exceptional V Scholars

Neuroblastoma, an embryonal tumor that arises in the peripheral sympathetic nervous system (PSNS), accounts for ~12% of cancer-related deaths in childhood. About half of all patients, especially those over 18 months of age with amplified copies of the MYCN oncogene, present with evidence of widespread metastasis at diagnosis and have a very high risk of treatment failure and death despite receiving greatly intensified chemotherapy. Attempts to improve the treatment of metastatic neuroblastoma have been slowed by the lack of a full understanding of the multistep cellular and molecular pathogenesis of this complex tumor. Recently, we developed a novel zebrafish model of neuroblastoma metastasis by overexpressing human MYCN oncogene, which is amplified in 20% of neuroblastoma cases, and knocking out gas7 gene, which is deleted in a subset of high-risk neuroblastoma patients. This zebrafish model affords unique opportunities to study the molecular basis of neuroblastoma metastasis in vivo and to identify novel genes and pathways that cooperate with MYCN overexpression or GAS7 loss to promote this fatal stage of disease development. This research approach is expected to reveal novel molecular targets that can be exploited therapeutically. To achieve this goal, we propose to establish reliable in vivo zebrafish models of the aberrant genes and pathways that contribute to neuroblastoma metastasis. In the near future, these models will be used to screen for effective small molecule inhibitors that block specific steps in metastasis with only minimal toxicity to normal tissues, and thus would be assigned high priority as candidate therapeutic agents.

Angelique Whitehurst, Ph.D.

Funded by the Kay Yow Cancer Fund

One of the greatest challenges in cancer treatment is that response to standard chemotherapy is frequently incomplete and fraught with adverse events. Current treatments are often ineffective because they function as a “one-size-fits-all” approach to a very diverse disease. This lack of success is magnified in triple negative breast cancer (TNBC), whose large and diverse group of subtypes greatly increases difficulty in treating a disease that makes up 15% of all breast cancers and disproportionately affects African American and Hispanic women. The goal of our project is to address these challenges by identifying and characterizing specific tumor vulnerabilities in TNBC to pave the way for novel combined chemotherapeutic treatments.  By screening through each gene in the genome, we have found that TNBC cancers rely on a protein called SIK2 for their survival.  We are working to understand why SIK2 is essential and to use inhibitors of SIK2 function to reduce TNBC tumor survival. 

Nikhil Wagle, M.D.

V Scholar Plus Award – extended funding for exceptional V Scholars

Estrogen receptor positive (ER+) metastatic breast cancer (MBC) remains the most common cause of breast cancer death. Though we have made many advances in the treatment of ER+ MBC, patients invariably develop resistance to therapies. The mechanisms of resistance are not well known. In order to improve survival for patients with ER+ MBC, it is critical to develop an understanding of this resistance.  

We recently found that in 7% of metastatic tumors from patients with resistant ER+ MBC, a gene called the retinoblastoma tumor suppressor (Rb) had been deleted.  Loss of the Rb gene resulted in resistance to multiple agents used for ER+ MBC.  ER+ MBC that lacks Rb likely represents a growing subset of patients in whom standard therapies do not work and in whom we do not know the optimal therapies. Therefore, it is critical to develop novel approaches to treating this subtype of ER+ MBC. 

The goal of this research is to better understand Rb loss in ER+ MBC and identify new therapeutic strategies. To do this, we will utilize cell line models we have generated that approximate ER+ MBC that has lost the Rb gene.  We will characterize these cell lines to identify how they become resistant to therapies, and identify novel therapeutic targets to prevent or overcome this resistance. At the completion of the project, our results should enable the development of clinical biomarkers of response and resistance for patients with ER+ MBC, and, ultimately, the design of clinical trials of therapeutic approaches and rational drug combinations. 

 

Akinyemi Ojesina, M.D., Ph.D.

V Scholar Plus Award – extended funding for exceptional V Scholars

Cervical cancer is responsible for 15% of cancer-related deaths in women worldwide, with highest frequency occurring in resource-limited settings. In addition, incidence and mortality rates are disproportionately higher in African-American and Hispanic populations within the United States, compared with other ethnic/racial groups. Many patients die of cancer either because it spreads to other body organs (metastasis), or because the cancer grows again in the same organ (recurrence). In cervical cancer, 90% of recurrence cases occur within 3 years of diagnosis, and less than 5% of these patients survive beyond 5 years. It is therefore essential to find ways to predict the likelihood of tumor recurrence in order to improve the management and prognosis of cancer patients. We hypothesize that the biological events that lead to tumor recurrence are already at play, even at the time of treatment. In particular, we believe that several biological molecules (human, viral and bacterial) play role in this complex process. We therefore seek to identify and compare these factors in surgically removed cervical tumors and their adjacent normal tissues between 2 groups of women: those with tumor recurrence within 3 years of surgery, and those without recurrence despite longer follow-up. We hope to identify differences in the relative abundance of these biological molecules that will serve as sentinels (we call them biomarkers) to warn us of the likelihood of tumor recurrence. This work has the potential to lead to the development of diagnostic tools for predicting and preventing recurrence in and beyond cervical cancer.

Eliezer Van Allen, M.D.

Funded by the 2016 V Foundation Wine Celebration Fund-A-Need for Prostate Cancer

Nearly all patients with metastatic castration resistant prostate cancer (mCRPC) develop resistance to androgen targeting agents and ultimately succumb to their disease. Recent discoveries by our group and others have demonstrated that a significant proportion of these patients harbor somatic or germline genomic defects in DNA repair defects, and targeting this genomically defined subset with therapies affecting this pathway may impact patient care. The goal of this project is to definitively characterize the genomic and functional landscape of DNA repair defects in mCRPC, clinically test the hypothesis that tumors harboring DNA repair defects preferentially benefit from immune checkpoint blockade, and explore innovative strategies to augment the efficacy of these agents through genomic and preclinical approaches. The project described herein is the first to comprehensively bridge the DNA repair and immuno-oncology fields to directly impact patients with advanced prostate cancer. We propose an integrated strategy that leverages advances in clinical genomics, trial design, and preclinical modeling methodology pioneered by our team. Furthermore, our proposal will be the first to specifically enable immune checkpoint blockade treatment strategies for mCRPC. In summary, this project will catalyze our understanding of how DNA repair defects impact advanced prostate cancer, and how deep knowledge about these events may enable clinical development of a transformative new class of immunotherapies that are greatly needed for advanced prostate cancer patients. 

Miguel Rivera, M.D.

V Scholar Plus Award – extended funding for exceptional V Scholars

Ewing sarcoma is the second most common bone cancer in children and is a very aggressive cancer with a rate of survival of only 60-70%. One important path to finding new treatments for this disease comes from the fact that all Ewing sarcoma cases have an abnormal fusion protein known as EWS-FLI1 which activates genes that drive the formation of tumors. In a prior study we characterized the genes that are activated by EWS-FLI1 in Ewing sarcoma and identified the kinase VRK1 as a promising new therapeutic target. We have also demonstrated that inactivation of VRK1 results in a strong reduction of Ewing sarcoma growth. In this proposal our goal is to characterize the role of VRK1 in Ewing sarcoma and to better understand the mechanisms that regulate its expression in these tumors. These experiments will validate the potential of VRK1 as a therapeutic target and will point to molecular pathways that account for its importance in this disease.

Steven Barthel, Ph.D.

V Scholar Plus Award – extended funding for exceptional V Scholars

It is now clear that our immune system has the capacity to both recognize and destroy cancer cells. Unfortunately, tumor cells escape this immune-mediated destruction by activating inhibitory switches to turn off T-cells. These switches, called immune checkpoint receptors (ICR), are now being targeted in early-phase clinical cancer trials in hopes of restoring and boosting immune-targeted killing of cancer.

However, despite showing promise in animal models of cancer, it remains unclear whether drugs targeting more recently identified ICRs will work in humans. Most importantly and a major focus of this proposal, while ICR therapies were previously assumed to bind and target only immune cells as noted above, our data newly identifies ICR expression directly on cancer cells along with therapeutically promising anti-cancer as well as pro-tumorigenic activities. What’s more, levels of cancer cell-ICRs could be dynamically regulated by cytokine stimulation. Overall, these findings raise unanswered questions on ICR-specific drug safety, specificity, potency and optimization that challenge existing, even false, assumptions within the immunotherapy field and invite further inquiry of these entirely unexplored tumor-intrinsic pathways.

This interdisciplinary proposal functionally dissects one particular tumor cell-expressed ICR and its undiscovered roles in cancer progression. As our seminal data reveals that it powerfully regulates cancer growth and metastasis, this research lays the groundwork for developing innovative drugs to block cancer advancement. Results will not only raise awareness of unanticipated impact of ICR drugs on a new tumor-intrinsic pathway but also invite further scientific and therapeutic inquiry and exploitation of this undefined pathway in cancer.

John Cole, M.D.

Funded by Hooters of America LLC

The purpose of our project is to create educational materials that can be used to increase the awareness of a minority populations of the benefits of cancer clinical trials. Our expectation is that an increased awareness will help make cancer clinical trials more understandable and will increase the likelihood that they will be considered as an excellent option for minority cancer patients needing therapy. 

In order to create the educational materials, we plan to bring together a multidisciplinary group of cancer providers which will include physicians, nurses, social workers, and cancer research coordinators. This group will help develop the educational information. In addition, we will also bring together minority cancer patients to advise us as to potential concerns or barriers that minority patients may have in regards to clinical trials. In this way we will be able to address those concerns in our educational materials. 

Utilizing the information that we will obtain from these activities, we plan to create an educational video that can be distributed and shown to minority cancer patients that will help them have a deeper understanding of the benefits of cancer clinical trials. This approach will be applicable across all cancers. 

Christy Hagan, Ph.D.

V Scholar Plus Award – extended funding for exceptional V Scholars

Breast cancer is the most common cancer in women. Despite advances in understanding how breast cancer develops, this has not translated into better therapies. The majority of breast cancers are positive for hormone receptors, such as the estrogen and progesterone receptor (PR), and are dependent on these receptors and their hormone ligands (estrogen and progesterone) for growth. However, as tumors progress they become hormone-independent, meaning they grow in the absence of hormones normally required for cell growth, perhaps due to unregulated hormone receptors. It was recently shown that women who were taking hormone replacement therapy that included progesterone had an increased risk of developing breast cancer, underscoring the importance of studying PR in breast cancer. Understanding PR action in the context of breast cancer is important to the development of better therapies.

PR is required during normal breast development and pregnancy, activating genes in the nucleus that stimulate cell growth. Recently, we identified that PR also regulates genes that drive inflammation, a normal cellular process that can function uncontrollably in cancer, generating mutations that may drive cancer growth. Decreasing inflammation has been shown to reduce the risk of developing breast cancer. The objective of the proposed experiments is to determine how PR regulates genes involved in inflammation, and if PR-dependent inflammation can be detected, and eventually blocked, in breast cancer. Understanding how PR regulates inflammation could lead to the development of a new area of therapies for breast cancer, combining currently existing hormone-based therapies with treatment aimed at reducing inflammation

Mailing List Mailing List
Close Mailing List