A recent study showed that short-term, low-dose therapy can provide lasting protection from cancer. Yet only two drugs are approved for breast cancer prevention in the US. One reason is the lack of clear signs that show a risk-reduction therapy is working. One possible sign is background enhancement on breast MRI. A higher level means a higher risk of getting breast cancer. When a patient lowers their risk by taking tamoxifen, the background also goes down. For others, it does not. This shows that the therapy is not working. We studied breast tissue to understand the reason for this background. We found that those with high levels had either high estrogen or signs of inflammation. In our new study, we will use tissue pieces from patients starting tamoxifen. Our goal is to find a molecular signal that shows the drug is working. For those who do not respond, we will test drugs that target inflammation. Finally, we will see if different background signals point to estrogen or inflammation. These signals could be assessed in a clinical trial at UCSF to support a personalized cancer prevention strategy.
This project is about making a type of cancer treatments called antibody-drug conjugates, or ADCs. ADCs are protein-based therapies designed like guided missles. They carry strong cancer-fighting drugs and deliver them directly to cancer cells using antibodies. But in many cases, the drug doesn’t get inside the cancer cell well enough, so the treatment doesn’t work as well as it could. We are trying to solve this problem by using a special feature on the surface of cancer cells called an internalizing receptor. This is a protein that acts like a fast-moving doorway—it pulls things inside the cell quickly. By connecting the drug to an antibody that targets this fast moving receptor, we hope to get more of the medicine inside the cancer cell, where it can do its job. We are focusing on two hard-to-treat cancers: triple-negative breast cancer and some types of lung cancer. We will test our new treatment in the lab and in models of these cancers. We will also study large research databases to learn which types of tumors might respond best. This research matters because many people with cancer still don’t have good treatment options. If this new approach works, it could lead to more effective and more targeted cancer treatments. It may help more patients benefit from ADCs, especially those with cancers that don’t respond well to current therapies.
Colorectal cancer (CRC) is frequently diagnosed when it has already spread to other parts of the body. When caught early, 65% of patients survive for five years, but if the cancer has spread, only 12% survive that long. This makes it critical to understand what causes CRC to spread and find better ways to treat it. Cancer spreads when certain genes become more or less active. Scientists have mostly studied how genes are turned on and off, but recent research shows that another process, called post-transcriptional regulation, is also important. This refers to all the steps that happen between when a gene is copied into RNA to when it is turned into a protein. These steps, such as modifying, transporting, or breaking down RNA, add another layer of control over how much of a protein a cell makes. RNA-binding proteins (RBPs) help manage this process. But when RBPs don’t work properly, cancer cells may grow and spread more easily. We will use a genetic screening method to find all RBPs that play a role in cancer spread. By studying these proteins, we hope to better understand how CRC spreads and discover new ways to stop it.
Myeloid cancers are a group of blood diseases that happen when blood-forming cells in the bone marrow become abnormal. These changes often come from genetic mutations. One important mutation occurs in a gene called ASXL1, which is linked to the development of blood cancers and associated with poor prognosis. However, it remains unclear how ASXL1 mutations could drive blood cancers in humans. We recently found that, in younger mice, ASXL1-mutant blood stem cells do not grow out of control. But in older mice, these mutated cells do grow and expand. These suggest that aged bone marrow environment (BMM) may help these abnormal cells grow and cause leukemia. We also found that in older mice, the bone marrow has more inflammation and a higher number of stromal cells (cells that support blood cell growth), which can be mitigated by anti-aging therapy. In this project, we will study how aged BMM helps these mutant cells grow and test if targeting the aged environment alters the development of blood cancers. By understanding this process, we hope to find new ways to treat or even prevent blood cancers in humans.
Cancer cells are always growing, and they need nutrients to keep up this fast growth. An exciting idea is that we might be able to starve cancer cells without harming healthy cells by getting rid of nutrients that cancer cells need. A drug being developed right now called ADI-PEG20 destroys a nutrient called arginine, which is an amino acid that is used to make protein and is particularly important for cancer cells. My lab studies what happens when cancer cells don’t have enough arginine. We want to understand how ADI-PEG20 works, how to improve it, and which cancers to treat with it. We have found that restricting arginine disrupts ribosomes, the machines that build new protein, causing them to get stuck and abandon their jobs early. We want to study three things to figure out how this impacts ADI-PEG20 treatment. First, why is protein production in cancer cells so sensitive to arginine levels? Next, what machinery in the cell is responsible for causing “starved” ribosomes to press the eject button in the middle of doing their jobs? Finally, what effect does this have on a cancer cell? This work will help us understand how a nutrient like arginine can directly control very important processes in the cell like protein production. It will also reveal how we can take advantage of cancer’s dependence on arginine to shrink tumors.
Multiple myeloma and AL amyloidosis are incurable cancers of blood cells. These blood cells are called plasma cells. There is only one therapy that is available for AL amyloidosis patients. In severe stages, AL amyloidosis patients survive less than one year. Amyloidosis plasma cells cause damage to the body by spilling in the blood a sticky protein. These sticky proteins attach to each other and build up in the heart. Buildup of proteins in the heart causes progressive poor function. AL amyloidosis is a major cause of malfunctioning of the heart and death. To cure AL amyloidosis, we need drugs that 1- stop plasma cells from spilling sticky proteins; 2- kill the cancer plasma cells; and 3-remove the buildup of sticky proteins from the heart. These drugs do not exist, because we do not know how sticky proteins get spilled and why the build-up is not removed.Recently, our lab found out how sticky proteins get out of amyloidosis plasma cells. We also showed that if we stop this process, cancer cells die. Finally, we discovered that cleaner cells that should remove sticky proteins from the heart are reduced and do not function in amyloidosis patients. Based on these data, we will make two novel drugs. One will stop spillage of sticky proteins and kill cancer cells. The other will remove sticky protein from the heart without the need of cleaner cells. Our work is doable and will create therapeutic options for AL amyloidosis patients that could cure their disease.
Every year, over 25,000 people need to have a stem cell transplant to treat their blood cancer. While this can cure their cancer, it also weakens the immune system. A weak immune system is a problem because it means people get more infections and can experience other complications like their cancer coming back. When we are healthy, our gut is filled with helpful bacteria. During cancer treatment, many patients lose these helpful bugs. Patients who lose the good bacteria after they have a transplant, don’t recover as well as patients who keep their helpful bugs. These good bacteria are needed for strong immune system recovery. We are working in the lab to find new ways to support healthy bugs during cancer treatment. We think this will help the patients’ immune system. Having a healthy immune system means fewer infections and a longer life. If successful, this research could lead to new treatments that help patients feel better during their transplant, avoid infections, and live longer. In the future, we will run clinical trials in transplant patients, which will lead to new standard treatments.
Funded by the 2025 Kay Yow Cancer Fund Final Four Research Award
Ovarian cancer is hard to treat. Most patient’s cancer comes back after standard treatment. Once the disease is back it is more difficult to treat and patients will eventually die from it. Chemotherapy can also cause direct harm to the body. This can make patients delay treatment, stop it altogether, or lower their doses. It can also harm the good bacteria in the gut, which is important for how well treatments work. Our goal is to come up with new ways to predict, prevent, and manage these harmful effects. We also want to develop new therapies that can lead to complete and lasting responses, increasing chances of cure right from the start. To reach this goal we will use mathematical modeling. This will allow us to test many treatments quickly, which cannot be done with traditional laboratory methods. First, we will use patient blood samples to predict the risk of toxicity, helping doctors know when to change or pause treatment. Next, we will use math modeling to find the best combinations of new targeted therapies. Finally, we will reduce the harmful effects of chemotherapy on the gut using math modeling to improve how well those therapies work. This research could change how we treat cancer. It may lead to complete tumor response and better chances for a cure.
Funded by the V Foundation Wine Celebration in honor of Mike “Coach K” and Mickie Krzyzewski
Pancreatic cancer is the third leading cause of cancer death in the United States. Treatments have changed very little in recent years. One challenge is that there are different “subtypes” of pancreatic cancer, so tailored therapies are desperately needed. Our lab found that drugs that block a protein called cyclin-dependent kinase 7 (CDK7) can kill the basal subtype, which is the most lethal. It makes up a quarter of pancreatic tumors and has the worst overall survival. We propose to study a drug that blocks CDK7 in patients with early-stage pancreatic cancer, after chemotherapy and before surgery. This funding will allow us to work with Carrick Therapeutics, who is giving us a supply of drug for the clinical trial. Our ultimate goal is to offer a new targeted treatment option and hope to pancreatic cancer patients.
Funded by Kelly Chase and the St. Louis Blues Alumni Puck Cancer charity hockey game in support of Hockey Fights Cancer powered by the V Foundation
This proposal presents a plan to collect and manage blood samples from patients getting stem cell transplants. In this treatment, unhealthy blood-forming cells (stem cells) are replaced with healthy ones. With help from the V Foundation, this research will set up and manage a new system for storing these transplant samples at Washington University in St. Louis. The study will look at detailed biological data from 40 patients who receive these transplants. These patients will have different types of donors: siblings who match, unrelated donors who are matched and unmatched, and partially matched family members. The goal of the transplant sample storage program is to help researchers at Washington University find ways to make stem cell transplants safer and more effective for treating blood cancers.
This research will also help understand how new drugs that suppress the immune system work. With the support of the V Foundation, this project supports their mission to defeat cancer.